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DIFFERENTIAL EQUATIONS ARISING FROM THE
GENERATING FUNCTION OF DEGENERATE BERNOULLI
NUMBERS OF THE SECOND KIND

TAEKYUN KIM, DAE SAN KIM, GWAN-WOO JANG, AND DMITRY V. DOLGY

ABSTRACT. We introduce the degenerate Bernoulli numbers of the sec-
ond kind as a degenerate version of the Bernoulli numbers of the second
kind. We derive a family of nonlinear differential equations satisfied by a
function closely related to the generating function for those numbers. We
obtain explicit expressions for the coefficients appearing in those differen-
tial equations and the degenerate Bernoulli numbers of the second kind. In
addition, as an application and from those differential equations we have
an identity expressing the degenerate Bernoulli numbers of the second kind
in terms of those numbers of higher-orders.

1. Introduction and preliminaries

As is well-known, the Bernoulli polynomials B,,(x) are defined by

t xt __ - - tn
— e = ZB,,L(L)H. (1.1)

n=0

et

A degenerate version of the Bernoulli polynomials B,,(z), denoted by S, (x)
and called the degenerate Bernoulli polynomials, was introduced in [1,2] by Car-
litz. They are given by

t 2 e tr

—— 1+ M) = () —. 1.2
ey R CAR D SLAT: (12)
When 2 =0, 3, = 3,(0) are called the degenerate Bernoulli numbers.

In [10], the degenerate exponential function ey(t), (A € (0,00),t € R) was

introduced in order to study the degenerate gamma function I'x(s) (0 < Re(s) <
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1), and the degenerate Laplace transforms £ (f(t)) for functions f(t) defined
for t > 0. The degenerate exponential function ey (t) is defined by

ex(t) = (1+At)>. (1.3)
Thus, in terms of ey (t), the degenerate Bernoulli numbers 3,, are given by
o t"
71:§;%H' (1.4)

The compositional inverse of e (t), denoted by log, ¢ and called the degenerate
logarithmic function, is given by

A
log, t = —— 1.5
g, S (1.5)
The Bernoulli polynomials of the second kind b, (x ) are defined by
t
— bp(z)— .
log(1 + t) Z az) (1.6)

n=0
For = 0, b, = b,(0) are called the Bernoulli numbers of the second kind.
In view of these considerations, the degenerate Bernoulli numbers of the sec-
ond kind by,  are naturally introduced as

t
log,(1+1) (1+ ;:Ob“A (A #0). (L.7)

In this paper, we consider the function

1 A
log,(1+1) (I+tp—1’
which is closely related to the generating function for b, . We will derive a

family of nonlinecar differential equations satisfied by F(t), and apply these to
find some identity expressing b, » in terms of higher-order degenerate Bernoulli

F=F(t)=F(t\ =

(1.8)

numbers of the second kind bg:))\ (see (4.1)). This line of study has been very
active in recent years, some of which are [4-7,11-13, 17].

Those family of differential equations involve certain coefficients a; x(IN),
which are given by and uniquely determined by recurrence relations. One par-
ticular thing to note here is that those coefficients are explicitly determined in
terms of the degenerate Stirling numbers of the second kind Sz x(n, k), and also
of the falling factorial polynomials.

The explicit formulas were obtained by using Faa di Bruno formula ([3],
p-137) which is expressed in terms of the exponential partial Bell polynomials
By k(z1, 22, -, Tn_gt1) (see (3.1)).

The degenerate Stirling numbers of the first kind S1 x(n, k) and those of the
second kind Sz x(n, k) had been recently introduced respectively in [14] and
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[9, 14, 16]. Further, the related degenerate complete Bell and degenerate expo-
nential partial Bell polynomials were also introduced in [8].

For each nonnegative integer k, the degenerate Stirling numbers of the second
kind Sy »(n, k) are given by

1 1 ) > t"
H((l FA)F - =) s“(n,k)m. (1.9)

n==k
Also, the generalized falling factorial polynomials (2),,  are defined by
(@pr=z(x =) (= (n—=1)N), (n>1), (z)or=1. (1.10)

In particular, the falling factorial polynomials (x),, are given by (), = ()n 1,
(n>0).
Here we state in the following two theorems which are snapshots of this paper.

Theorem 1.1. The family of nonlinear differential equations
N
DN+ HNFN =3 " a \(N)FT (N =1,2,3,-) (1.11)
i=0
have a solution

1 A

F=F(t\) = =
GN = e ~ Trr =1

where, for 0 <i < N.

(1.12)
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Theorem 1.2. The degenerate Bernoulli numbers of the second kind by x are
given by

n—1

bp oy = (*1)"{ (D1, + Z (1,)“1’)‘ (aix(n) —na; x(n — 1))}

n+1 (i4+1)!

(D" (Wnt1s |, S z+1A ki n—i—1
e +ZZ —DMR(; )A

=0 k=i
X ()\Sgg(’n, k) +nSy 1(n—1, k)) (1.13)

nl

_ D" Mg z+1)\
B n+1 +Z

AR () )<M>n+§§<—l>’ (5) (o)

where we understand that 527%(n —1,n)=0.

In summary, we introduce the degenerate Bernoulli numbers of the second
kind b,, » as a degenerate version of Bernoulli numbers of the second kind. We
derive a family of nonlinear differential equations in (1.11) which are satisfied by
the function F'(t) closely related to the generating function ¢£'(¢) of the numbers
bp,x. We obtain the explicit expressions in (1.12) for the coefficients a; (V)
appearing in those differential equations by using Fad di Bruno formula (see
(3.4)). Then from the differential equations in (1.11) and the explicit expressions
of a; A\(N) in (1.12) we will determine the explicit expressions of b,  in (1.13).
Finally, as an application we will derive an identity which expresses b,  in terms
of higher-order degenerate Bernoulli numbers of the second.

2. Differential equations satisfied by degenerate Bernoulli numbers
of the second kind

We let

1

(A # 0). (2.1)
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Differentiation with respect to ¢ of (2.1) gives us

—1
FO = — (1 +t)*!
TRTET) A
-1 A 1
= log, (1 4t) + ——
(log, (L +1))2 <1+t oga(1+1) + 1—|—t>
2 (2.2)
1 A N 1 )
1+t \log,(1+1) log,(1+1t)
AF + F?
1+t( + .
Further differentiation of (2.2) yields
F® = (%) ()\F+F2)+ (/\F(1)+2FF(1))
1 2
AF +F?)(1+ X +2F 2.3
(1+t)(+)(++) (2.3)

= (%) {0+ X)F + (1+ 3\ F? +2F%}.

Yet further differentiation gives us

—2
F® = S {OA+N)F + (1+3\)F? +2F3)}

~1\?
+ (1—H> FO L+ 22) + (2 +6)\)F + 6F?)

= (Hl ) {@X+2X%)F + (24 6)\)F? + 4F°)}

-1 3 S 2 2 2
+ (1—+t> AF+F2) {(A+ M)+ (2+ 6))F +6F?}

1 3
(1 — t) {@X+3N+N)F + (249N + TA%)F? + (6 + 120)F® + 6F*} .
(2.4)

The above observations lead us to put

F(N) (1+t) Zal)\(N F(H_l (N= 1a2a37) (25)

Our next task is to determine a; »(NV), (0 < ¢ < N).
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By differentiating (2.5), we obtain
N+1 N
FNTD = N AN P
1+t ;a’%)\( )

N
FOS (i + DagA(N)F'
() >+ A

L\ N _
Z(I_H> ZN%,\(N)F‘“

1 N+1 N |
<1_> + Daix(N)\F + F?)F!

+1 N
- <_> Z (N + A+ iA)ag 5 (N) FP1
=0
N+1 N

+ (1_—+1t> > (i + 1ag y(N)FF?

i=0

1\ Nt N | (.
B (—) D (N A+ iNapa(N)FH

1+t =

1 N+1 N+1 .
+ (—) > iai A(N)F

1+t =
_1 N+1
N

+ (N + A+ i@ A (V) + a1 A (N)) FP*

+ (N + l)aN7A(N)Fi+2}.

On the other hand, by replacing N by N + 1 in (2.5), we have

(N+1) 1 N+1 N+1 -
i=0

Comparing (2.6) and (2.7), we get the following recurrence relations:

(I,O’)\(N-F 1) = (N+ /\)(1107)\(]\[)7
LLN+1,)\(N+ 1) = (N+ I)CLN’,\(N),
ai (N +1)=(N+ (@ +1)AN)a; x(N) +ia;—1 x(N), for 1 <i < N.
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From (2.5) with N =1 and (2.2), we obtain the initial conditions

ao,)\(l) = /\, al«,A(l) =1. (2.9)

We now observe from (2.8) and (2.9) that

aoy)\(N-F 1) = (N + )\)aoy)\(N)
= (N + NN + A~ Daga(N — 1)

- (2.10)
=(N+N(N+A=1)(N+ A= (N —1))ag(1)
= (N+A)nN+1,
where (2)y =x(x —1)--- (@ = N +1), (N > 1), and () = 1.
Also, from (2.8) and (2.9) we have
ant1a(N +1) = (N + Dana(N)
= (N + 1)Nay_1A(N — 1)
= (2.11)

= (N+1)N--2a.,(1)
=(N+1).

Let i be a fixed integer with 1 < ¢ < N. Then, from (2.8) and (2.11), we
observe that

aix(N+1) = (N + (i + D)A\)a;\(N) +ia;—1x(N)
=(N+(i+ m){(N + (i 4+ DX~ Da;n(N — 1) +ia;_1 A(N — 1)}

+iai,1’,\(N)
+ Z(N + (L + 1)/\)()@,1,)\(1\[ — 1) + iai,17/\(N)
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=(N+@GE+DAN)N+@E+1)A-1)
X {(N+ (Z—i—l)/\* 2)(1,1;")\(]\/'7 2) +’L.az'_17)\(N7 2)}

+i(N+ (@ + 1)N)ai—1 x(N — 1) +ia;—1 x(N)
=(N+0GE+DA)N+GE+DA=1)(N + (i + 1A —2)a; x(N —2)
2
+i Y (N + (i + DA)ai1n (N — 1)
1=0
=N+ G+ DN Nit1
N—i
+i 3 (N4 (i+DAai 1A (N = 1).
1=0
Thus we have shown that
aia(N+1) =d(N + (i + DA N-it1
N—i

2.12
+i Y (N + (i + DAhai A (N = 1), 212
1=0
for 1 <i<N.
Now, from (2.5) and (2.10)-(2.12), we get the following theorem.
Theorem 2.1. The family of nonlinear differential equations
N
CDNA+ONFN =3 "a, \(N)FT, (N =1,2,3,--)
i=0
have a solution
1 A
F=F(t = =
EN = T~ as =1
where a; x(N)(0 < i < N) are uniquely determined by
aA(N) = (N +A-1)n, (2.13)
(I,i,,\(N) = Z'(N + (Z + 1)/\ - l)N—i
N—i-1
+i Y (N4 (+DA= 1 a(N=1-1), (1<i<N-1),
1=0
(2.14)

aya(N) = N1, (2.15)



Differential equations arising from the generating function of degenerate Bernoulli numbers

3. Explicit determination of a; (V) and b, »

In this section, we would like to determine explicit expressions for a; (V)
and b, 5. For this purpose, we will make use of the exponential partial Bell
polynomials By, (21,2, ,Zn—k+1) and Faa di Bruno formula (see [3], p.133).

Further, we will show that our result can be expressed also in terms of the
degenerate Stirling numbers of the second kind Sz »(n, k) (see [9, 14]).

The exponential partial Bell polynomials B,, (x1, 22, -+, Zp_k+1) are defined
by
Bn,k(xla Ty 7$n—k+1)
n! n—k+1 z i (31)
=Y e 1 () > ez k20,
[L=r il o g

where the sum runs all nonnegative integers iy, s, - - , i,—k+1 satisfying iy +ia+
ot ip_gy1 =k, and ip + 2ia+ -+ (n — k + 1)in_g+1 = n, (see [3], p.133).
The generating function for By, (21,2, - , Zp_k+1) is given by

n

N\ k
1 [t = t
E (Z Ll;) = Z Bn,k(fL'l,ZL'Q, t 75L'n—1€+1)71_’7 (See [3]7 p133) (32)
i=1

n=k

Replacing z; by (1), » (i =1,2,---) in (3.2), we easily obtain the following

expressions
B k(D1 (D2, s (Dn—k+1,0)
k&K k (3.3)
= CE S (}) s = S, 02 ), (see (19).(110)),
TI=0
d'n,
— t
gl © g(t)
n (3.4)
= f(k) (g(t))Bn,lc(gl(t)vgll(t)v e 7g(n_k+1)(t))7 (See [37 p137})
k=0
We need one more formula from ([3], p.135).
By, i (abzy, ab’zy, - - ,abn_k+1xn,k+1) (3.5)

= akb”Bn,k(xl,:rg, o Tp_g+1), (see [3, p.135]).

We are now going to show the following theorem about explicit expressions
for a; x(IN).
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Theorem 3.1. For 0 <i< N,

‘ (3.6)
al k
NyN—i Ky,
(—1D)NA AZ( 1) k,!<i>527%(N k)
Proof. We apply the Faa di Bruno formula in (3.4) with
1+H)* -1 1
= t = - 1 = —,
w=glt) = —H fw) =
Then, by using (3.5), we have
v v
dt_NF(t) =~/ o g(t)
N o\ ®
= Z <E> Bmk(g/(t))g//(t)) T 79(N7k+1)(t))
k=0 (3.7)

al 1
— Z(_l)kk!ulﬁ.l (1 + t))\k—N)\N—k
k=0

X BNyk((l)l,%v (1)2,%7 t 7(1)N—k+1,%)'

With A replaced by % in (3.3), from (3.7) we obtain two different expressions.

(DN + )N L F(t)
= (DN S (—DFR e (14 )MANTES, 1 (N, k) (3.8)
= (DN SNy wer (L OMAF S (D (R (M) (3.9)
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Before proceeding further, we observe the following.

(AT
1 (a4 -1 1"
Tkl A Ry
1 1 k
= — ]_ —1 -1
L3 (3.10)
k
(e
4o\t
B Zk: R i L
- gt i witl’
Substituting (3.10) respectively into (3.8) and (3.9) we have
N
(DY A+ )N fx F(t)
= ()N S AL ()RR (E) Sy, 1 (N B FiH (3.11)
= (DN AT L XD () () )N F (3.12)

Now, by comparing (3.11) and (3.12) with (2.5), the derived results follow. [

Corollary 3.2. For N =1,2,-- -, the sequence of numbers a; »(N) (0 <i < N)
uniquely determined by the recurrence relations (2.13)-(2.15) is explicitly given
by

Next, we want to derive explicit expressions for b, » by using the result in the
above theorem.
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Theorem 3.3. The degenerate Bernoulli numbers of the second kind by  are

given by

n—1

. (Dnt1,a (1)it1, )\ )
by = (-1)" { 1 + ; G+1)! (aix(n) —na; x(n— 1))

n—1

(—=1)"(1)pt1.2 n i(l)Hl)A( 1)’%'( >/\,L i-1

, :(n —1,k)) (3.13)

where we understand that 527%(n —1,n)=0.

Proof. First, we note that

by = lim (tF (1)), (3.14)
where, from (2.1) and (2.5), we have

] n
(n) — (n) (n—1) I
(tF()™ = tF()™ +nF(t) <1 - t)

Iy ai()(logy (1+6)"F = (1 + 1) 05 ai (0 — 1)(log, (1 +8)"~
(log(1+ 1))+ |
(3.15)

Thus, from (3.14) and (3.15), we obtain

by = (—1)" lim S\ (3.16)

w—0 wntl’
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Here
n n—1
Snwar = (exw—1) Z a; x(n)w" ™" — neyw Z a; x(n — Hw"™*
= i=0
n—1
= (exw — 1)ap r(n) — Z a; y(njw" ™"
i=0
n—1
+ Z(ai,)\(n) —na;y(n—1)w" ‘e w
i=0
oo n
= - Zan—j,k(n)w]
j=1 =1
n oo
+ (anfz',/\ (TL) Nap—q, >\ '—UZ Z
i=1 1=0
oo n
= - Zan,w\(n)w]
=1 i=1

oo min{n,j}

1
DI L R @mialn) = nia(n = 1)
j=1 i=1

:Z{ —J’\—an —jA n)+z Uj z)? QAp— m(n)—nan—isk(”_l))}“’j

=
3 >J*+z Wictd () — na—a(n — 1) Ju
G- )' n—iA(n) —nan_; x(n w’.
j=n+1
(3.17)
Hence, from (3.16) and (3.17), we see that
j
L)j—i
> T (i) = namian = 1)
=1 VT (3.18)

433
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and

n (1)n 1 - n+1—1,
=(-1) {nl o ++1)A' + ; n +4i — zA (@n—iA(n) — nap_;x(n — 1))}
= (=1)" { (171)7i_11)‘ + ((1)L+1)A (aix(n) —na; z(n — 1))}

7=l

(3.19)

Finally, the rest of assertions in (3.13) follows from (3.19) together with (3.6).
O

During the course of the proof of the above theorem, we have shown the
following result.

n

Corollary 3.4. For eachn =1,2,--- , the sequences {a]-:A(n)}j;Ol and {a; x(n—
1) "_1 satisfy the following identities.

J
Z ] 1)\ an Z)\(IL)*IL(J,,L zA(’L*I))

1 .
= ap_jr(n) — n!(),—‘:’A7 (1<j<n).
4!

Theorem 3.5. For N > k > 0, we have

lim, ANES, 1 (N, k)

= )I\IE)I%J)‘N kBNk((l) %3(1)2,%7"' 7(1)N7k+1,%) = Sl(N7 k)v

(3.20)

where S1(N, k) are the signed Stirling numbers of the first kind.

Proof. Here we give two different proofs for this. From (3.3) and (3.5), we note
that

Byip(LA=1),(A=DA=2),-+ (A= 1),(A=2)- - (A= (N = k)))
= /\NikBN,k ((1)1,§7 (1)2,§7 ) (1)N—k+l,§) (321)
= ARG, L(NR).
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Thus from (3.21), we have
: N-—-k
lim AV7RS, 1 (N, k)
= B ((=1)°0L (=1)"11, (<12, -, (~)NTH(V k)
- (—I)N*RBN7k<O!, 1,20, (N — k;)!)

= (1) FSL(V, k)|
= S1(N, k), (see [3, p.135]).

For another proof, we consider

= N-—-k tN
> AN BN,k((1)1,§7(1)2,§,~.. ,(1)N_,M&)ﬁ
N=k !
53 AN
kY BN,,C(@)L%, (D1, 7(1)N_k+17%> ( N)!
N=k
_\—k
= E(;(nﬁ - )
1

The statement follows now from (3.21) and (3.22).
Corollary 3.6. For0<i< N,
lim a; y(N) = (=1)V(=1)%!S (N, ).
A—0

Proof. From (3.6), we have

N
a;A(N) = (=DM Y N (=1)FR! <k> ANTES, L (N k).

1
k=i

Now, the result follows from (3.20).

Making use of (3.20) and taking A — 0 in (3.7), we get

1 (N) 1 N , (N )
(m) BT kzzo(_l)kk!W’ (N >0).

(3.22)

(3.23)

(3.24)

435
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In the same way, invoking (3.23) and taking A — 0 in (3.15), we obtain

-1 (—1)il(tS1(n, i) + n(1 + )Si(n — 1,4))
CEEE 2 (log(1 + )L s (n=1).

i=0

Here we understand that Sq(n — 1,n) = 0.
The Bernoulli numbers of the second kind b,, are defined by the generating
function

t tn
=Y b, :
log(1+1t) ; n! (3.26)

Thus from (1.7) we see that b, = limy_,0 b, . By taking the limit A\ — 0 of
the expression in (3.13) and making use of either (3.20) or (3.23), we obtain

by, = Z: (L _:)1 (Sl(n i) +nSi(n—1 L)) (n>1), (3.27)

where S1(n —1,n) = 0. Again, we see that (3.27) agrees with the result in ([16],

(1.4), (2.18), (3.11)).

Next, we will present two different expansions for by, .
We first observe that

oo

(1 + ) — 1)n t
Z n+l nl (3.28)

Thus from (3.28) we get

et tl ©0 ()\ l)m m
1= (Zb“‘ > (7; m+1 m')
n t"
Z <¥ n—1+1 <l>()\ B l)n_lbu> n!’

(3.29)

Now, we derive the following recurrence relation for b,  from (3.29):

— n—1+1

n—1
1 n
bor=1, byr=— Z _— <l> (A= Dp_ibyr, (n>1). (3.30)
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In order to find another expression for b, x, we consider the following.

> t 1
Zb"’)‘jz A+t -1
nl 1 (1- —>

(1+t)*
( )
- - m " *
m+ 1 m!
m

1=1

k i Z n ()\ - 1)m1 . (/\ - l)m;\, ﬁ
mi, - ,mg) myp+1 my +1 ]

k
k'

p"qg

ol
Il
=)

tqu

bl
Il
o

p”qg

k=0 n=k \ mi+--+mr=n
m;>1
oo n ,
— E E (_l)k‘, j : < n ) ()\ — ].)7rL1 o (/\ — 1)"% ﬁ
- .. P . , J . / ' .
n=0 \ k=0 mi+-+mE=n mi, 2 s my +1 my +1 n.
m;>1

(3.31)

Thus from (3.31) we see that

n

n (>\ - ]-)’m ()\ - 1)'m.
b\ = —1)k LN ko
A Z( ) Z <m1, cee ,mk) m1+ 1 my + 1 (3.32)

k=0 mi+-Fmep=n
m;>1

4. Applications of differential equations

For any positive integer r, the degenerate Bernoulli numbers of the second
kind of order r are defined by

t " Y’ Tt
L = — = b —. .
<logA(1 n t)) <(1 FEp. 1> 2Oy (4.1)

Here, using the nonlinear differential equation in Theorem 2.1, we will derive
an identity which expresses the degenerate Bernoulli numbers of the second kind
in terms of those numbers of higher-order.

We recall here that the degenerate Bernoulli numbers of the second kind b,, »
are given by

t o0

=tF(t) = Z bj.A%~ (4.2)

log, (1+1t) =

437
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On the one hand, from (4.2) we have

On the other hand, for N > 1 and from Theorem 2.1 we have

(tF(t)><N) =tF(t)™ + NF(@)N-D

N-1

(1+t) {Zam Fi+1,N(1+t)Zai7A(Nf1)Fz‘+1}

i=

N-1

_ (1+t) {Zaz,\ Nt~ l(tF) Ty > ai,)\(N_l)t_i_l(tF)H—l
— » i+l
-N ; a; \(N — 1)t (tF) }

oo

N -1
— (71)N+7n( +m )tm

m
m=0

N N-1
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The first sum in (4.4) is

o N oo
SO Cona(N)E (4.5)

m=0 1=0 [=0
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with

m (N +m—1 i 1
Cm,i,l(N)=(—1)N+< m >am( )bz(rl)u'

We observe that (4.5) is equal to

oo N oo
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m=031=0 |=—:
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&S] N
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J
>
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N
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(4.6)

oo 7 N .
(N+j—1-1 y 1
— N+j+l ) (i+1)
-3 }: }{: (~1)N+ < / >al,A(N)b,+M(ZH)!ta.

j=—NI=—N J=1

Proceeding in the same way, the second and third sums in (4.4) are respec-
tively given by

N-1

:i i Z N(— 1)N+J+l+1<N+j7l71)

-1
N i=max{0,—1—-1} J (47)

41 1 j
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0o J N-1 .
\ N [N+ —1-1
>y Y weyve (VI

j=—(N-1)l=—=(N-1) i=max{0,—1} (48)

(Nl L
X(I/L,)\(N 1)bl+i.)\ (l+t)'t .
Now, from (4.6)-(4.8) and separating the sum into the singular and nonsin-
gular ones we obtain
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Finally, comparing (4.3) and (4.9) we get the following theorem and corollary.

Theorem 4.1. For j =0,1,2,---, and N =1,2,3,--- |, we have the following
identity.

bjsrn.A
N .
i > pves (VT
I=—N i=max{0, gl

1) J!
X a,:,A(N)bl(:ui,,\) I+

j N-1 .
+ > > N(—1)N+i+i+1 (N +J'J—_ll - 1)

l=—N i=max{0,—-1—1}

+1 J!
o - D T

J — .
. N+j-1-1
+ Z Z N(_l)N+]+l+l ( J i )

l=—(N-1) i=max{0,—1}

(+1)_ J!
X az‘,A( )bl:-z A (l i )
Corollary 4.2. For N > 2 and —(N —1) < j < —1, the following identity holds
true.
J N .
PIDIE | S
. , I+3,\ Y
o j—1 (L +4)!
J .
; N+j-1-1 (i+1) 1
4 N(—1)N+i+t+1 _ , Db
N,,_ZH j-l R L BN (E ]
J - .
; N+j-1-1 (+1) 1
" S N(—l)Nﬂ““( T e - R o
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